“Mikroprosesor merupakan komponen utama dalam setiap mesin komputasi saat ini. Mikroprosesor banyak digunakan terutama dalam komputer, mulai dari komputer pribadi (PC) sampai mainframe”

Microprocessor intel xeon

Microprocessor intel xeon

Sejarah ditemukannya Mikroprosesor Pentium berawal pada tahun 1958, seorang insinyur bernama Jack Kilby yang bekerja pada Texas Intruments mencoba memecahkan masalah dengan memikirkan sebuah konsep menggabungkan seluruh komponen elektronika dalam satu blok yang dibuat dari bahan semikonduktor. Terciptalah chip yang pertama, meskipun masih dengan segala kekurangan dan kelemahannya. Beberapa saat setelah itu, Robert Noyce, yang bekerja pada Fairchild Semiconductor Corporation, menemukan hal serupa, meskipun mereka bekerja pada dua tempat yang berbeda. Sejak penemuan pertama sebuah IC, riset banyak dilakukan untuk menyempurnakan sebuah IC.

Beberapa hal yang cukup penting dalam sebuah IC adalah ukuran dan daya listrik yang dibutuhkan sebuah IC untuk berfungsi dengan baik. Saat ini, sebuah IC yang ukurannya sekitar jari kuku manusia, di dalamnya terdapat ratusan juta komponen yang terintegrasi menjadi satu. Gorden Moore, co-founder perusahaan Intel, pada tahun 1965 memperkirakan bahwa jumlah transistor yang terdapat dalam sebuah IC akan bertambah 2 kali setiap 18 bulan sekali.

Kecenderungan peningkatan jumlah transistor ini telah terbukti setelah sekian lama dan diperkirakan akan terus berlanjut. Sebagai contoh perkembangan IC, sebuah 64-Mbit DRAM yang pertama kali di pasaran pada tahun 1994, terdiri dari 3 juta transistor. Dan microprocessor Intel Pentium 4 terdiri lebih dari 42 juta transistor dan kira-kira terdapat 281 IC didalamnya. Bahkan berdasar pada International Technology Roadmap for Semiconductor (ITRS), diharapkan akan tersedia sebuah chip yang terdiri dari 3 milyar transistor pada tahun 2008. Umumnya, bahan semikonduktor yang digunakan dalam pembuatan IC, adalah silikon. Beberapa bahan lain pun juga memungkinkan untuk digunakan. Proses pembuatan IC sendiri terdiri dari ratusan step. Meskipun proses pembutan hingga siap untuk digunakan sangatlah rumit, namun keuntungan yang didapat dari fleksibilitas sebuah IC dibandingkan dengan jika tidak menggunakan IC.

Jika ditilik dari sejak penemuan sebuah IC, teknologi IC boleh dibilang masih sangat muda. Belum genap setengah abad dari pertama kali diproduksi, IC telah berperan penting dalam peradaban manusia. Seperti komputer misalnya, yang proses utamanya dikontrol oleh ratusan IC. Komputer merupakan hal penting dalam mendukung perkembangan teknologi lainnya. Sudah sepantasnya kita mengucap syukur kepada Tuhan, yang telah mengizinkan perkembangan teknologi terjadi begitu pesatnya, yang akhirnya membawa kemudahan bagi umat manusia. Bayangkan jika pada waktu itu IC tidak ditemukan. Mungkin perkembangan teknologi tidak akan seperti sekarang ini.

IC sendiri dipergunakan untuk bermacam-macam piranti, termasuk televisi, telepon seluler, komputer, mesin-mesin industri, serta berbagai perlengkapan audio dan video. IC sering dikelompokkan berdasar jumlah transistor yang dikandungnya. Lahirnya Mikroprosesor telah menimbulkan suatu revolusi yang masih terus berlangsung dalam cara merancang dan membuat sistem-sistem digital yang kompleks. Ukurannya yang kecil, harganya yang murah, dan kemampuannya untuk dapat diprogram, membuat mikroprosesor sangat cocok untuk sejumlah besar aplikasi dalam banyak bidang, mulai dari permainan elektronik (electronics games) sampai pengontrolan robot untuk industri dan pengontrolan pesawat ruang angkasa.

Akhir tahun 1960-an banyak perusahaan penghasil semikonduktor berupaya untuk memanfaatkan teknologi LSI/VLSI (Large Scale Integration/Very Large Scale Integration) yang masih relatif baru guna merancang sistem-sistem digital yang kompleks, misalnya untuk pembuatan kalkulator yang dapat diprogram dan untuk pembuatan komputer-komputer kecil. Salah satu perusahaan yang berusaha keras tersebut adalah Intel Corporation. Pada tahun 1969 perusahaan ini mengembangkan suatu set IC jenis LSI untuk digunakan dalam kalkulator seri baru sesuai pesanan perusahaan Jepang, Busicom. Chip Intel ini diorganisasikan sebagai suatu komputer serba-guna (general-purpose computer) dan diprogram selama proses pembuatannya agar berfungsi sebagai sebuah kalkulator.

Berikut ini adalah daftar mikroprosesor yang dikeluarkan berbagai pabrikan antara tahun 1971 sampai 1979 yang dikeluarkan oleh situs http://www.antiquetech.com.

Perkembangan Selanjutnya

Sejalan dengan perkembangan teknologi, mikroprosesor mengalami evolusi. Baik dalam teknologi pembuatannya, maupun dalam teknologi yang ditanam dalam mikroprosesor itu sendiri. Ketika awal perkembangannya, mikroprosesor hanya memiliki lebar data 4-bit, maka untuk saat ini ada yang sudah mencapai 128-bit.

Perkembangan mikroprosesor dapat dikelompokkan menjadi beberapa tahap berdasarkan teknologi pembuatannya:* SSI (small-scale integration) : chip dengan maksimum 100 komponen elektronik.
* MSI (medium-scale integration) : chip dengan 100 sampai 3.000 komponen elektronik.
* LSI (large-scale integration) : chip dengan 3.000 sampai 100.000 komponen elektronik.
* VLSI (very large-scale integration) : chip dengan 100 ribu sampai 1 juta komponen elektronik.
* ULSI (ultra large-scale integration) : chip dengan lebih dari 1 juta komponen elektronik.

Berdasarkan teknologi kapasitas mikroprosesor dalam melakukan komputasi, mikroprosesor terbagi ke dalam beberapa kelompok, yaitu:

  • Mikroprosesor 4-bit, 8-bit, 16-bit, 32-bit, 64-bit

Berdasarkan jumlah instruksinya, mikroprosesor tergolong ke dalam beberapa kelompok, yaitu:

  • CISC (Complex Instruction Set Computer)
  • RISC (Reduced Instruction Set Computer)
  • ZISC (Zero Instruction Set Computer)

Sejarah perkembangan Processor Intel :

1971: 4004 Microprocessor

Pada tahun 1971 munculah microprocessor pertama Intel , microprocessor 4004 ini digunakan pada mesin kalkulator Busicom. Pada tahun 1971 Intel mulai memasarkan IC-IC tersebut sebagai seri MCS-4 (microcomputer set four). Seri MCS-4 ini asalnya terdiri atas empat IC PMOS (P-channel metal-oxide semiconductor), yaitu sebuah chip ROM (Read Only Memory) 4001, sebuah chip RAM (Random Access Memory) 4002 sebagai memori baca-tulis, sebuah chip antarmuka I/O (input/output) 4003, dan sebuah chip CPU (Central Processing Unit) 4004. Chip 4004 inilah yang sekarang dianggap sebagai mikroprosesor pertama yang diproduksi secara komersial. IC 4004 memiliki 2.300 transistor PMOS dan dapat memproses 4-bit sekaligus. IC 4004 memiliki 16 register sementara serba-guna, sebuah ALU (Aritmatic and Logic Unit) yang terutama terdiri atas sebuah penjumlah (adder) 4-bit, dan rangkaian logika lainnya yang diperlukan untuk memproses 45 tipe instruksi yang dimiliki mikroprosesor ini. Intel 4004 dapat melakukan operasi-operasi aritmatik dan logika sederhana seperti penjumlahan, pengurangan, perbandingan dan operasi-operasi logika AND dan OR. CPU ini juga dapat melakukan berbagai fungsi kontrol seperti mengambil instruksi dari memori (fetch), menerjemahkannya (decode) dan kemudian melaksanakan instruksi tersebut (execute).

Mikroprosesor pertama ini merupakan suatu sukses dan digunakan untuk berbagai aplikasi dalam industri. Karena kegunaannya, mikroprosesor ini menarik banyak perhatian dari kalangan teknisi maupun dari kalangan industri semikonduktor. IC 4004 semula dimaksudkan untuk digunakan dalam sebuah kalkulator. Tetapi beberapa perancang rangkaian logika menyadari bahwa chip ini dapat menggantikan satu PCB (Printed Circuit Board) penuh dengan rangkaian-rangkaian logika kombinasi dan sekuensial. Selain itu, kemampuannya untuk mengubah fungsi suatu sistem hanya dengan mengubah programnya tanpa perlu mengubah desain perangkat kerasnya, sangat menarik. Faktor-faktor inilah antara lain yang mendorong perkembangan mikroprosesor. Intel 4004 dengan cepat diikuti oleh seri-seri mikroprosesor lainnya dari berbagai perusahaan penghasil semikonduktor. Intel sendiri tidak lama kemudian mengeluarkan suatu versi IC 4004 yang diperbaiki, yaitu Intel 4040 yang juga sama-sama 4-bit. Dengan penemuan ini maka terbukalah jalan untuk memasukkan kecerdasan buatan pada benda mati.

1972: 8008 Microprocessor

Pada tahun 1972 munculah microprocessor 8008 yang berkekuatan 2 kali lipat dari pendahulunya yaitu 4004.Kemudian pada tahun 1972, Intel mengeluarkan mikroprosesor baru yang merupakan peningkatan dari IC 4040, yaitu IC 8008. Perubahan yang paling nyata dari IC Intel 8008 ini adalah lebar data yang digunakan menjadi selebar 8-bit. IC 8008 ini memerlukan sekitar 20 IC tambahan untuk bisa membentuk CPU yang berfungsi dengan baik.

1973: 8080 Microprocessor

Menjadi otak dari sebuah komputer yang bernama Altair, pada saat itu terjual sekitar sepuluh ribu dalam 1 bulan.Dan pada tahun 1973, Intel mengeluarkan lagi IC terbarunya yaitu 8080 yang merupakan peningkatan dari IC 8008. Lebar data yang digunakan masih sama 8-bit. Namun peningkatan yang sangat berarti adalah IC 8080 ini hanya memerlukan dua IC tambahan untuk bisa membangun sebuah CPU yang berfungsi dengan baik yaitu IC 8224 (pembangkit clock) dan IC 8228 (pengontrol sistem dan driver bus), serta peningkatan jumlah instruksi.  Perusahaan semikonduktornya lainnya tak mau ketinggalan mengeluarkan mikroprosesor produknya, baik yang serumpun dengan keluarga mikroprosesor yang dikeluarkan oleh Intel maupun yang berbeda. Pada tahun 1975, MOS Technology mengeluarkan mikroprosesor dengan seri 6500 yang berbeda dengan mikroprosesor keluaran Intel.Pada tahun berikutnya, perusahaan pembuat semikonduktor Zilog Inc. mengeluarkan mikroprosesor yang serumpun dengan Intel 8080. Perusahaan ini mengeluarkan mikroprosesor 8-bit yang dimaksudkan untuk menggantikan Intel 8080. mikroprosesor ini dinamakan dengan Zilog Z80. Mikroprosesor ini merupakan pukulan telak bagi Intel. Bagaimana tidak, mikroprosesor ini tidak seperti Intel 8080, dimana tidak memerlukan IC tambahan untuk membangun sebuah CPU yang berfungsi dengan baik. Selain itu juga instruksi yang digunakannya hampir sama dengan Intel 8080. Di tahun-tahun selanjutnya bermunculan mikroprosesor-mikroprosesor dari berbagai pabrikan. Motorola mengeluarkan mikroprosesor seri 6800, AMD dengan mikroprosesor seri Am2900, Texas Instruments dengan mikroprosesor TMS1000, Fairchild dengan F8, dan lain sebagainya.

1978: 8086-8088 Microprocessor

Sebuah penjualan penting dalam divisi komputer terjadi pada produk untuk komputer pribadi buatan IBM yang memakai prosesor 8088 yang berhasil mendongkrak nama intel.

1982: 286 Microprocessor

Intel 286 atau yang lebih dikenal dengan nama 80286 adalah sebuah processor yang pertama kali dapat mengenali dan menggunakan software yang digunakan untuk processor sebelumnya.
1985: Intel386™ Microprocessor
Intel 386 adalah sebuah prosesor yang memiliki 275.000 transistor yang tertanam diprosessor tersebut yang jika dibandingkan dengan 4004 memiliki 100 kali lipat lebih banyak dibandingkan dengan 4004.

1989: Intel486™ DX CPU Microprocessor

Processor yang pertama kali memudahkan berbagai aplikasi yang tadinya harus mengetikkan command-command menjadi hanya sebuah klik saja, dan mempunyai fungsi komplek matematika sehingga memperkecil beban kerja pada processor.

 

1993: Intel® Pentium® Processor

Processor generasi baru yang mampu menangani berbagai jenis data seperti suara, bunyi, tulisan tangan, dan foto.

 

1995: Intel® Pentium® Pro Processor

Processor yang dirancang untuk digunakan pada aplikasi server dan workstation, yang dibuat untuk memproses data secara cepat, processor ini mempunyai 5,5 jt transistor yang tertanam.

1997: Intel® Pentium® II Processor

Prosesor Intel Pentium II ialah prosesor penerus Pentium Pro, yang dilengkapi dengan teknologi MMX yang diluncurkan pertama kali pada Mei 1997. Sebelum diberi nama Pentium II, prosesor ini dikenal dengan codename Klamath.Terdapat 7.5 juta transistor terintegrasi di dalamnya sehingga dengan processor ini pengguna PC dapat mengolah berbagai data dan menggunakan internet dengan lebih baik.

Pentium II sebenarnya sama seperti Pentium Pro, dan prosesor generasi keenam dari keluarga P6 lainnya. Akan tetapi, desainnya yang agak radikal membuatnya menjadi pembeda. Dengan menggunakan teknologi 350 nanometer (0.35 mikron) dan 250 nanometer (0.25 mikron) dan dilengkapi dengan instruksi MMX, prosesor ini menjadi prosesor untuk mainstream setelah Pentium MMX, setelah Pentium Pro mengalami kegagalan pada kelas desktop dan laku hanya pada server. Desain dudukan prosesornya dinamakan SECC (Single Edge Contact Cartridge), atau Slot-1. Cache Level-1 sebesar 32 KB terintegrasi pada die, akan tetapi cache Level-2 dimasukkan ke dalam cartridge, sehingga menyebabkan kecepatan L2 tidaklah seperti kecepatan prosesor, melainkan setengahnya. Kontak dengan motherboard pun beda. Dengan fisik seperti card adapter, Pentium II ini dibentuk, berbeda dengan kebanyakan CPU yang beredar waktu itu yang masih menggunakan ZIF socket-7. Inti prosesor Pentium II Klamath yang berjalan pada kecepatan 233 Mhz hingga 333 MHz dibuat dengan teknologi 0.35 mikron (350 nanometer). Akan tetapi inti prosesor Pentium II Deschutes, yang berlari pada kecepatan 333 Mhz hingga 450 Mhz menggunakan teknologi proses 0.25 mikron. Semua inti Pentium II didasarkan pada teknologi yang sama seperti Pentium Pro, dengan semua keungggulannya (kecuali L2 cache), dan terintegrasikannya instruksi MMX yang telah diperbaiki. Dengan semua keunggulan itu, chip pun menjadi semakin kecil, sehingga frekuensi semakin tinggi dan daya yang dibutuhkan pun menjadi lebih rendah, dan yang paling penting harganya yang lebih murah dibandingkan dengan Pentium Pro. Intel hanya merilis Pentium II untuk pasar desktop saja, mengingat mereka juga membuat prosesor yang dibangun dengan teknologi yang sama dengan Pentium II yang dikhususkan untuk workstation dan server dengan nama Pentium II Xeon. Karenanya, pada Pentium II, tidak terdapat fitur multiprosesor, seperti halnya Pentium Pro. Lagipula, aplikasi yang benar-benar mengutilisasi banyak prosesor pada saat itu sangatlah sedikit pada segmen desktop, dan hanya tersedia pada beberapa aplikasi segmen server. Prosesor ini adalah prosesor 32-bit. Meski ia memiliki address-bus sebesar 36-bit yang mampu mengalamati hingga 64 Gigabyte, limitasi pada arsitektur 32-bit menyebabkan prosesor ini hanya mampu mengalamati hingga 4 Gigabyte saja. Pengecualian terjadi pada sistem multiprosesor, yang dikonfigurasikan dalam mode NUMA (Non-Uniform Memory Access) di mana setiap prosesor memiliki jalur memorinya sendiri-sendiri. Dengan menggabungkan beberapa prosesor Pentium II (Xeon tentunya), batas 4 Gigabyte arsitektur 32-bit pun dapat dilewati.

1998: Intel® Pentium II Xeon® Processor

Processor yang dibuat untuk kebutuhan pada aplikasi server. Intel saat itu ingin memenuhi strateginya yang ingin memberikan sebuah processor unik untuk sebuah pasar tertentu.

1999: Intel® Celeron® Processor

Processor Intel Celeron merupakan processor yang dikeluarkan sebagai processor yang ditujukan untuk pengguna yang tidak terlalu membutuhkan kinerja processor yang lebih cepat bagi pengguna yang ingin membangun sebuah system computer dengan budget (harga) yang tidak terlalu besar. Processor Intel Celeron ini memiliki bentuk dan formfactor yang sama dengan processor Intel jenis Pentium, tetapi hanya dengan instruksi-instruksi yang lebih sedikit, L2 cache-nya lebih kecil, kecepatan (clock speed) yang lebih lambat, dan harga yang lebih murah daripada processor Intel jenis Pentium. Dengan keluarnya processor Celeron ini maka Intel kembali memberikan sebuah processor untuk sebuah pasaran tertentu.

1999: Intel® Pentium® III Processor

Pentium III adalah mikroprosesor generasi keenam buatan Intel yang diluncurkan secara resmi pada tanggal 26 Februari 1999 sebagai penerus prosesor Intel Pentium II. Prosesor berarsitektur 32-bit ini menggunakan mikroarsitektur Intel x86 yang diperluas dengan instruksi RISC seperti Pentium Pro. Adapun sebenarnya prosesor x86 adalah prosesor berinstruksi CISC. Pada masanya, prosesor ini sempat menempatkan diri sebagai prosesor tercepat sebelum AMD meluncurkan Athlon. Jangkauan kecepatan prosesor ini mulai 40 MHz (empat kali 100 MHz) hingga 1,4 GHz (10,5 kali 133 MHz). Prosesor Pentium III dengan kecepatan 1.400 MHz diluncurkan hampir bersamaan dengan peluncuran prosesor Pentium 4generasi pertama yang menimbulkan ketimpangan pasar sehingga sempat kalah pamor. Pentium III menggunakan slot (dikenal sebagai Slot 1) sebagai sarana penyambung dengan papan induk, sama dengan Pentium II sebelum akhirnya berubah menggunakan soket dengan 370 pin (dikenal sebagai soket PGA 370). Prosesor ini awalnya berjalan pada bus berkecepatan 100 MHz sebelum ditingkatkan menjadi 133 MHz.

Prosesor ini sempat berevolusi beberapa kali sebelum akhirnya digantikan oleh Pentium 4. Evolusinya dapat dijabarkan sebagai berikut.

  • Katmai (generasi awal). Prosesor ini masih menggunakan bus berkecepatan 100 MHz yang dibangun menggunakan teknik pabrikasi 250 nm. Adapun kecepatan cache prosesor setengah kali lipat dari kecepatan prosesor, misalnya apabila prosesor berjalan pada kecepatan 500 MHz, maka kecepatan cache prosesor tersebut adalah 250 MHz. Cache yang digunakan adalah SRAM berkapasitas 512 KB.
  • Coppermine (generasi kedua). Prosesor ini mulai menggunakan bus berkecepatan 133 MHz walaupun masih ada yang masih berkecepatan 100 MHz. Peningkatan yang paling menonjol pada generasi ini adalah pada kecepatan cache yang setara dengan kecepatan prosesor, meski ukurannya dipotong menjadi setengahnya. Prosesor ini tersedia dalam desain Slot 1 maupun soket PGA 370.
  • Tualatin (generasi ketiga). Prosesor ini dibangun memakai teknologi pabrikasi 180 nm dan sudah menggunakan kecepatan bus 133 MHz.

Pentium III memang hanya diluncurkan untuk komputer desktop dan mobile. Untuk mengatasi kebutuhan komputer server maupun workstation, Intel menyiasatinya dengan meluncurkan Pentium III Xeon. Semua prosesor tersebut mempunyai fitur-fitur antara lain:

  • Dukungan terhadap instruksi MMX (Multimedia Extension) dan SSE (Streaming SIMD Extension). Dengan menggunakan dua instruksi tersebut, Pentium III dapat menjalankan aplikasi multimedia dan penyuntingan video lebih gegas daripada prosesor yang tidak dilengkapi dengan SSE.
  • Seperti Pentium II, generasi pertama dari prosesor ini menggunakan antarmuka Dual Independent Bus (DIB) yang memisahkan antara bus prosesor dengan cache serta bus prosesor dengan bus memori. Inilah sebab mengapa kecepatan cache memorinya setengah dari kecepatan prosesor. Generasi kedua dan ketiga dari prosesor ini telah meningkatkan performa DIB yang digunakannya sehingga cache prosesornya menjadi setara dengan kecepatan prosesor.
  • Meski kontroversial karena masalah privasi, prosesor ini memiliki fitur nomor seri prosesor yang mampu mengidentifikasi nomor seri dari prosesor yang digunakan. Sebenarnya, fitur ini lebih ditujukan bagi mereka yang berada dalam lingkungan korporat dengan tujuan untuk memudahkan mereka dalam proses audit aset perusahaan.

Karena menggunakan kecepatan bus yang lebih tinggi, maka Pentium III tidaklah serta-merta dapat langsung didukung oleh papan induk yang mendukung Pentium II. Papan induk dengan chipset Intel 430 untuk Pentium II tidak dapat bekerja dengan Pentium III secara langsung, kecuali dengan melakukan proses pembaharuan BIOS. Adapun papan induk dengan chipset Intel 440BX, 440ZX, 440LX, dan Intel 820 sudah mendukung prosesor ini sepenuhnya. Prosesor ini dapat bekerja berdampingan dengan memori SDRAM PC-100, SDRAM PC-133, RDRAM PC-600, RDRAM PC-700, RDRAM PC-800, DDR-SDRAM PC-1600, DDR-SDRAM PC-2100 (hanya segelintir chipset yang menyertakannya), dan Virtual Channel SDRAM (VC-SDRAM) PC-133 (hanya segelintir chipset yang menyertakannya).


1999: Intel® Pentium® III Xeon® Processor

Intel kembali merambah pasaran server dan workstation dengan mengeluarkan seri Xeon tetapi jenis Pentium III yang mempunyai 70 perintah SIMD. Keunggulan processor ini adalah ia dapat mempercepat pengolahan informasi dari system bus ke processor , yang juga mendongkrak performa secara signifikan. Processor ini juga dirancang untuk dipadukan dengan processor lain yang sejenis.


2000: Intel® Pentium® 4 Processor

Processor Pentium IV merupakan produk Intel yang kecepatan prosesnya mampu menembus kecepatan hingga 3.06 GHz. Pertama kali keluar processor ini berkecepatan 1.5GHz dengan formafactor pin 423, setelah itu intel merubah formfactor processor Intel Pentium 4 menjadi pin 478 yang dimulai dari processor Intel Pentium 4 berkecepatan 1.3 GHz sampai yang terbaru yang saat ini mampu menembus kecepatannya hingga 3.4 GHz.

 

2001: Intel® Xeon® Processor
Processor Intel Pentium 4 Xeon merupakan processor Intel Pentium 4 yang ditujukan khusus untuk berperan sebagai computer server. Processor ini memiliki jumlah pin lebih banyak dari processor Intel Pentium 4 serta dengan memory L2 cache yang lebih besar pula.

2001: Intel® Itanium® Processor
Itanium adalah processor pertama berbasis 64 bit yang ditujukan bagi pemakain pada server dan workstation serta pemakai tertentu. Processor ini sudah dibuat dengan struktur yang benar-benar berbeda dari sebelumnya yang didasarkan pada desain dan teknologi Intel’s Explicitly Parallel Instruction Computing ( EPIC ).

2002: Intel® Itanium® 2 Process
or
Itanium 2 adalah generasi kedua dari keluarga Itanium.

2003: Intel® Pentium® M Processor
Chipset 855, dan Intel® PRO/WIRELESS 2100 adalah komponen dari Intel® Centrino™. Intel Centrino dibuat untuk memenuhi kebutuhan pasar akan keberadaan sebuah komputer yang mudah dibawa kemana-mana.

2004: Intel Pentium M 735/745/755 processors
Dilengkapi dengan chipset 855 dengan fitur baru 2Mb L2 Cache 400MHz system bus dan kecocokan dengan soket processor dengan seri-seri Pentium M sebelumnya.

2004: Intel E7520/E7320 Chipsets
7320/7520 dapat digunakan untuk dual processor dengan konfigurasi 800MHz FSB, DDR2 400 memory, and PCI Express peripheral interfaces.

2005: Intel Pentium 4 Extreme Edition 3.73GHz
Sebuah processor yang ditujukan untuk pasar pengguna komputer yang menginginkan sesuatu yang lebih dari komputernya, processor ini menggunakan konfigurasi 3.73GHz frequency, 1.066GHz FSB, EM64T, 2MB L2 cache, dan HyperThreading.

2005: Intel Pentium D 820/830/840
Processor berbasis 64 bit dan disebut dual core karena menggunakan 2 buah inti, dengan konfigurasi 1MB L2 cache pada tiap core, 800MHz FSB, dan bisa beroperasi pada frekuensi 2.8GHz, 3.0GHz, dan 3.2GHz. Pada processor jenis ini juga disertakan dukungan HyperThreading.

2006: Intel Core 2 Quad Q6600
Processor untuk type desktop dan digunakan pada orang yang ingin kekuatan lebih dari komputer yang ia miliki memiliki 2 buah core dengan konfigurasi 2.4GHz dengan 8MB L2 cache (sampai dengan 4MB yang dapat diakses tiap core ), 1.06GHz Front-side bus, dan thermal design power ( TDP ).

2006: Intel Quad-core Xeon X3210/X3220
Processor yang digunakan untuk tipe server dan memiliki 2 buah core dengan masing-masing memiliki konfigurasi 2.13 dan 2.4GHz, berturut-turut , dengan 8MB L2 cache ( dapat mencapai 4MB yang diakses untuk tiap core ), 1.06GHz Front-side bus, dan thermal design power (TDP).

Tahapan proses pembuatan microprocessor dengan teknologi NMOS (N-channel Metal-Oxide Silicon) :

Ini adalah ilustrasi bagaimana chip dibuat. Artikel dan gambar-gambar di bawah ini mendemonstrasikan tahap-tahap proses bagaimana memproduksi sebuah CPU (central processing unit), yang digunakan di setiap PC di dunia saat ini. Anda akan melihat sekilas beberapa pekerjaan yang luar biasa ini dilakukan tiap hari di pabriknya di Intel.

1. Sand (Pasir)
Pasir – terutama Quartz – memiliki persentase tinggi dari Silicon dalam pembentukan Silicon dioksida (SiO2) dan nerupakan bahan dasar untuk produksi semikonduktor.

Pasir – sekitar 25% masa Silicon yang merupakan senyawa kedua terbanyak – setelah oksigen – di muka bumi.

2. Silikon Cair
Silikon dimurnikan dalam tahap berlapis untuk akhirnya nencapai kualitas produksi yang disebut Electronic Grade Silicon (EGS). EGS mungkin hanya mengandung sebuah atom asing setiap satu triliun atom Silikonnya. Pada gambar di bawah ini Anda bisa lihat bagaimana sebuah kristal besar tumbuh dari silikon cair yang dimurnikan. Hasilnya adalah kristal tunggal yang disebut Ingot.

Silikon cair – skala: level wafer (~300mm / 12 inch)

3. Kristal Silikon Tunggal – Ingot
Sebuah ingot dibuat dari Electronic Grade Silicon. Sebuah ingot memiliki berat sekitar 100 kilogram (220 pound) dan memiliki kemurnian Silicon 99.9999%.

Mono-crystal Silicon Ingot — scale: wafer level (~300mm / 12 inch)

4. Pengirisan Ingot
Ingot kemudian diiris menjadi disc-disc silikon individual yang disebut wafer.

Ingot Slicing — scale: wafer level (~300mm / 12 inch)

5. Wafer
Wafer-wafer ini dipoles sedemikian rupa hingga tanpa cacat, dengan permukaan selembut kaca cermin. Intel membeli wafer-wafer siap produksi itu dari perusahaan pihak ketiga. Process rumit 45nm High-K/Metal Gate oleh Intel menggunakan wafer dengan diameter 200 milimeter. Saat Intel mulai membuat chip-chip, perusahaan ini mencetak sirkuit-sirkuit di atas wafer 50 milimeter. Dan untuk saat ini menggunakan wafer 300mm, yang menghasilkan penghematan biaya per-chip.

Wafer — scale: wafer level (~300mm / 12 inch)

6. Mengaplikasikan Photo Resist
Cairan (warna biru) yang di tuangkan di atas wafer saat diputar adalah sebuah proses dari photo resist yang sama seperti yang kita kenal di film untuk fotografi. Wafer diputar selama tahap ini untuk membuatnya sangat tipis dan bahkan mengaplikasikan layer photo resist.

Applying Photo Resist — scale: wafer level (~300mm / 12 inch)

7. Exposure
Hasil dari photo resist diekspos ke sinar ultraviolet (UV. Reaksi kimianya ditrigger oleh tahap pada proses tersebut, sama dengan apa yang terjadi pada material film pada sebuah kamera saat Anda menekan tombol shutter. Hasil dari photo resist yang diekspos ke sinar UV akan bersifat dapat larut. Exposure diselesaikan menggunakan mask yang berfungsi seperti stensil dalam tahap proses ini. Saat digunakan dengan cahaya UV, mask membentuk pola-pola sirkuit yang bervariasi di atas tiap layer dari mikroprosesor. Sebuah lensa (di tengah) mengurangi image dari mask. Sehingga yang dicetak di atas wafer biasanya adalah empat kali lebih kecil secara linier daripada pola-pola dari mask.

Exposure — scale: wafer level (~300mm / 12 inch)

8. Exposure

Meskipun biasanya ratusan mikroprosesor bisa dihasilkan dari sebuah wafer tunggal, cerita bergambar ini hanya akan fokus pada sebuah bagian kecil dari sebuah mikroprosesor, yaitu pada sebuah transistor atau bagian-bagiannya. Sebuah transistor berfungsi seperti sebuah switch, mengendalikan aliran arus listrik dalam sebuah chip komputer. Peneliti-peneliti di Intel telah mengembangkan transistor-transistor yang sangat kecil sehingga sekitar 30 juta transistor dapat diletakkan pas di kepala sebuah peniti.

Exposure — scale: transistor level (~50-200nm)

9. Membersihkan Photo Resist
Photo resist yang lengket dilarutkan sempurna oleh suatu pelarut. Proses ini meninggalkan sebuah pola dari photo resist yang dibuat oleh mask.

Washing off of Photo Resist — scale: transistor level (~50-200nm)

10. Etching (Menggores)
Photo resist melindungi material yang seharusnya tidak boleh tergores. Material yang ditinggalkan akan digores (disketch) dengan bahan kimia.

Etching — scale: transistor level (~50-200nm)

11. Menghapus Photo Resist
Setelah proses Etching, photo resist dihilangkan dan bentuk yang diharapkan menjadi terlihat.

Removing Photo Resist — scale: transistor level (~50-200nm)

12. Mengaplikasikan Photo Resist
Terdapat photo resist (warna biru) diaplikasikan di sini, diekspos dan photo resist yang terekspos dibersihkan sebelum tahap berikutnya. Photo resist akan melindungi material yang seharusnya tidak tertanam ion-ion.

Applying Photo Resist — scale: transistor level (~50-200nm)

13. Penanaman Ion
Melalui seuatu proses yang dinamakan “ion implantation” (satu bentuk proses yang disebut doping), area-area wafer silikon yang diekspos dibombardir dengan “kotoran” kimia bervariasi yang disebut Ion-ion. Ion-ion ini ditanam dalam wafer silikon untuk mengubah silikon pada area ini dalam memperlakukan listrik. Ion-ion ditembakkan di atas permukaan wafer pada kecepatan tinggi. Suatu bidang listrik mempercepat ion-ion ini hingga kecepatan 300.000 km/jam.

Ion Implantation — scale: transistor level (~50-200nm)

14. Menghilangkan Photo Resist
Setelah penanaman ion, photo resist dihilangkan dan material yang seharusnya di-doped (warna hijau) memiliki atom-atom asing yang sudah tertanam (perhatikan sekilas variasi warnanya).

Removing Photo Resist — scale: transistor level (~50-200nm)

15. Transistor yang Sudah Siap
Transistor ini sudah dekat pada proses akhirnya. Tiga lubang telah dibentuk (etching) di dalam layer insulasi (warna magenta) di atas transistor. Tiga lubang ini akan terisi dengan tembaga yang akan menghubungkannya ke transistor-transistor lainnya.

Ready Transistor — scale: transistor level (~50-200nm)

16. Electroplating
Wafer-wafer diletakkan ke sebuah solusi sulfat tembaga di tahap ini. Ion-ion tembaga ditanamkan di atas transistor melalui proses yang disebut electroplating. Ion-ion tembaga bergerak dari terminal positif (anoda) menuju terminal negatif (katoda) yang dipresentasikan oleh wafer.

Electroplating — scale: transistor level (~50-200nm)

17. Tahap Setelah Electroplating
Pada permukaan wafer, ion-ion tembaga membentuk menjadi suatu lapisan tipis tembaga.

After Electroplating — scale: transistor level (~50-200nm)

18. Pemolesan
Material ekses dari proses sebelumnya di hilangkan

Polishing — scale: transistor level (~50-200nm)

19. Lapisan Logam
Lapisan-lapisan metal dibentuk untuk interkoneksi (seperti kabel-kabel) di antara transistor-transistor. Bagaimana koneksi-koneksi itu tersambungkan ditentukan oleh tim desain dan arsitektur yang mengembangkan funsionalitas prosesor tertentu (misal Intel® Core™ i7 Processor). Sementara chip-chip komputer terlihat sangat flat, sesungguhnya didalamnya memiliki lebih dari 20 lapisan yang membentuk sirkuit yang kompleks. Jika Anda melihat pada pembesaran suatu chip, Anda akan menemukan jaringan yang ruwet dari baris-baris sirkuit dan transistor-transistor yang mirip sistem jalan raya berlapis di masa depan

Metal Layers — scale: transistor level (six transistors combined ~500nm)

20. Testing Wafer
Bagian dari sebuah wafer yang sudah jadi ini diambil untuk dilakukan test fungsionalitasnya. Pada tahap test ini, pola-pola di masukkan ke dalam tiap chip dan respon dari chip tersebut dimonitor dan dibandingkan dengan daftar yang sudah ditetapkan.

Wafer Sort Test — scale: die level (~10mm / ~0.5 inch)

21. Pengirisan Wafer
Wafer di iris-iris menjadi bagian-bagian yang disebut Die.

Wafer Slicing — scale: wafer level (~300mm / 12 inch)

22. Memisahkan Die yang gagal Brefungsi
Die-die yang saat test pola merespon dengan benar akan diambil untuk tahap berikutnya.

Discarding faulty Dies — scale: wafer level (~300mm / 12 inch)

23. Individual Die
Ini adalah die tunggal yang telah jadi pada tahap sebelumnya (pengirisan). Die yang terlihat di sini adalah die dari sebuah prosesor Intel® Core™ i7.

Individual Die — scale: die level (~10mm / ~0.5 inch)

24. Packaging
Bagian dasar, die, dan heatspreader digabungkan menjadi sebuah prosesor yang lengkap. Bagian dasar berwarna hijau membentuk interface elektris dan mekanis bagi prosesor untuk berinteraksi dengan sistem komputer (PC). Heatspreader berwarna silver berfungsi sebagai pendingin (cooler) untuk menjaga suhu optimal bagi prosesor.

Packaging — scale: package level (~20mm / ~1 inch)

25. Prosessor
Inilah prosesor yang sudah jadi (Intel® Core™ i7 Processor). Sebuah mikroprosesor adalah suatu produk paling kompleks yang pernah dibuat di muka bumi. Faktanya, dibutuhkan ratusan langkah – hanya bagian-bagian paling penting saja yang ditampilkan pada artikel ini – yang dikerjakan di suatu lingkungan kerja terbersih di dunia, sebuah lab mikroprosesor.

Processor — scale: package level (~20mm / ~1 inch)

26. Class Testing
Selama test terakhir ini, prosesor-prosesor akan ditest untuk key karakteristik mereka (diantaranya test pemakaian daya dan frekuensi maksimumnya)

Class Testing — scale: package level (~20mm / ~1 inch)

27. Binning
Berdasarkan hasil test dari class testing, prosesor dengan kapabilitas yang sama di kumpulkan pada transporting trays yang sama pula.

Binning — scale: package level (~20mm / ~1 inch)

28. Retail Package
Prosesor-prosesor yang telah siap dan lolos test akhirnya masuk jalur pemasaran dalam satu kemasan box.

Sumber : http://duniatehnikku.wordpress.com
                   http://blog.ub.ac.id
                   http://ciburuan.wordpress.com
                   http://id.wikipedia.org

About these ads